INTEGRATED CIRCUITS

DATA SHEET

OQ2535HP SDH/SONET STM16/OC48 multiplexer

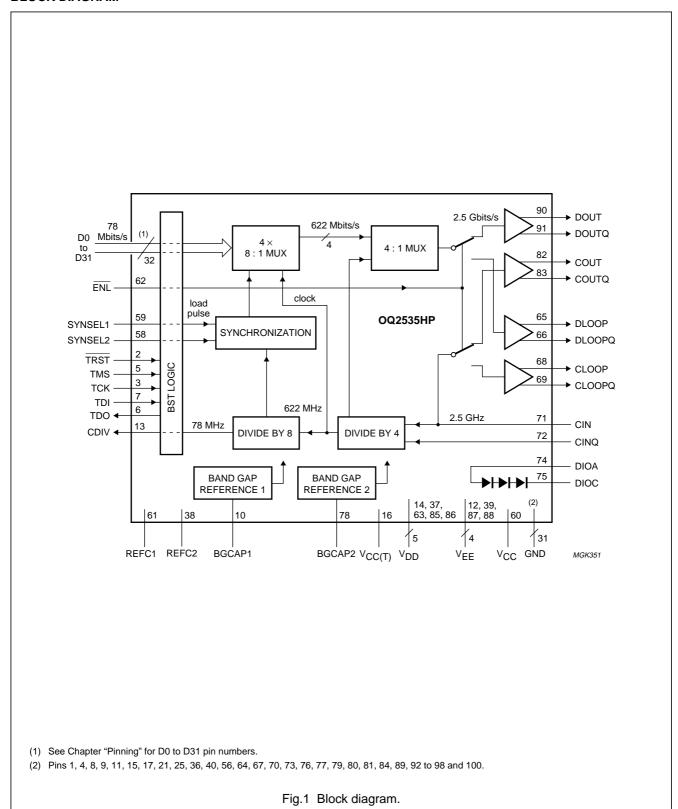
Preliminary specification
File under Integrated Circuits, IC19

OQ2535HP

FEATURES

- · Normal and loop (test) modes
- 3.3 V TTL compatible data inputs
- Differential CML (Current-Mode Logic) clock and data outputs
- 5 V TTL clock output (low speed interface)
- High input sensitivity (50 mV for the high speed clock input)
- Input capacitance <2 pF (low speed data inputs)
- Clock phase margin of 250° at 78 Mbits/s interface
- Boundary Scan Test (BST) at low speed interface, in accordance with "IEEE Std 1149.1-1990"
- Low power dissipation (typically 1.65 W).

GENERAL DESCRIPTION


The OQ2535HP is a 32-channel multiplexer intended for use in STM16/OC48 applications. It combines data from a total of 32×78 Mbits/s input channels onto a single 2.5 Gbits/s output channel. It features 3.3 V TTL data inputs and a 5 V TTL clock output at the low speed interface, and CML compatible inputs and outputs at the high speed interface.

ORDERING INFORMATION

TYPE	PACKAGE					
NUMBER	NAME DESCRIPTION VERSI					
OQ2535HP	HLQFP100	plastic heat-dissipating low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT470-1			

OQ2535HP

BLOCK DIAGRAM

SDH/SONET STM16/OC48 multiplexer

OQ2535HP

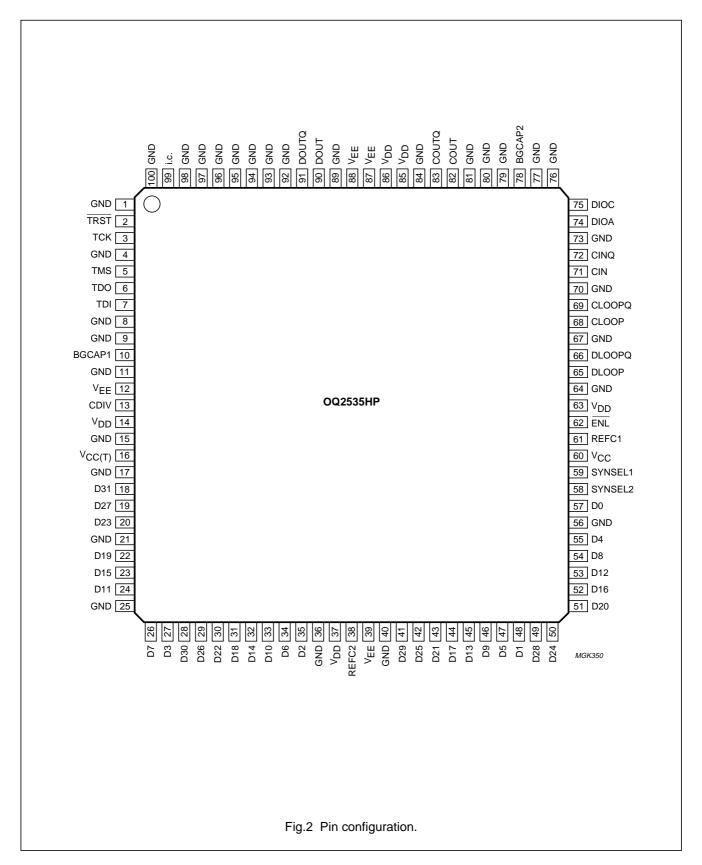
PINNING

SYMBOL	PIN	TYPE ⁽¹⁾	DESCRIPTION
GND	1	S	ground
TRST	2	I	test RESET input for BST mode (active LOW)
TCK	3	I	test clock input for BST mode
GND	4	S	ground
GND 1 TRST 2 TCK 3 GND 4 TMS 5 TDO 6 TDI 7 GND 8		I	test mode select input for BST mode
TDO	6	0	serial test data output for BST mode
TDI	7	I	serial test data input for BST mode
GND	8	S	ground
GND	9	S	ground
BGCAP1	10	Α	pin for connecting external band gap decoupling capacitor (4 × 8 : 1 MUX)
GND	11	S	ground
V _{EE}	12	S	supply voltage (-4.5 V)
CDIV	13	0	78 MHz clock output
V_{DD}	14	S	supply voltage (+3.3 V)
GND	15	S	ground
V _{CC(T)}	16	S	supply voltage for TTL buffer (+5.0 V); not connected internally to V _{CC}
GND	17	S	ground
D31	18	I	78 Mbits/s data input channel for D31
D27	19	I	78 Mbits/s data input channel for D27
D23	20	I	78 Mbits/s data input channel for D23
GND	21	S	ground
D19	22	I	78 Mbits/s data input channel for D19
D15	23	I	78 Mbits/s data input channel for D15
D11	24	I	78 Mbits/s data input channel for D11
GND	25	S	ground
D7	26	I	78 Mbits/s data input channel for D7
D3	27	I	78 Mbits/s data input channel for D3
D30	28	I	78 Mbits/s data input channel for D30
D26	29	I	78 Mbits/s data input channel for D26
D22	30	I	78 Mbits/s data input channel for D22
D18	31	I	78 Mbits/s data input channel for D18
D14	32	I	78 Mbits/s data input channel for D14
D10	33	I	78 Mbits/s data input channel for D10
D6	34	I	78 Mbits/s data input channel for D6
D2	35	I	78 Mbits/s data input channel for D2
GND	36	S	ground
V_{DD}	37	S	supply voltage (+3.3 V)
REFC2	38	A	pin for connecting external reference decoupling capacitor (3.3 V CMOS reference)

OQ2535HP

SYMBOL	PIN	TYPE(1)	DESCRIPTION
V _{EE}	39	S	supply voltage (-4.5 V)
GND	40	S	ground
D29	41	I	78 Mbits/s data input channel for D29
D25	42	l	78 Mbits/s data input channel for D25
D21	43	I	78 Mbits/s data input channel for D21
D17	44	l	78 Mbits/s data input channel for D17
D13	45	ı	78 Mbits/s data input channel for D13
D9	46	I	78 Mbits/s data input channel for D9
D5	47	I	78 Mbits/s data input channel for D5
D1	48	l	78 Mbits/s data input channel for D1
D28	49	I	78 Mbits/s data input channel for D28
D24	50	I	78 Mbits/s data input channel for D24
D20	51	I	78 Mbits/s data input channel for D20
D16	52	ı	78 Mbits/s data input channel for D16
D12	53	ı	78 Mbits/s data input channel for D12
D8	54	l	78 Mbits/s data input channel for D8
D4	55	I	78 Mbits/s data input channel for D4
GND	56	S	ground
D0	57	I	78 Mbits/s data input channel for D0
SYNSEL2	58	I	selection input 2 for synchronization pulse timing
SYNSEL1	59	I	selection input 1 for synchronization pulse timing
V _{CC}	60	S	supply voltage (+5.0 V)
REFC1	61	А	pin for connecting external reference decoupling capacitor (for standard TTL reference)
ENL	62	ı	loop mode enable (active LOW)
V_{DD}	63	S	supply voltage (+3.3 V)
GND	64	S	ground
DLOOP	65	0	data output to demultiplexer IC OQ2536 (loop mode)
DLOOPQ	66	0	inverted data output to demultiplexer IC OQ2536 (loop mode)
GND	67	S	ground
CLOOP	68	0	clock output to demultiplexer IC OQ2536 (loop mode)
CLOOPQ	69	0	inverted clock output to demultiplexer IC OQ2536 (loop mode)
GND	70	S	ground
CIN	71	I	clock input from VCO IC
CINQ	72	I	inverted clock input from VCO IC
GND	73	S	ground
DIOA	74	Α	anode of temperature diode array
DIOC	75	А	cathode of temperature diode array
GND	76	S	ground
GND	77	S	ground
BGCAP2	78	А	pin for connecting external band gap decoupling capacitor (4 : 1 MUX)

SDH/SONET STM16/OC48 multiplexer


OQ2535HP

SYMBOL	PIN	TYPE(1)	DESCRIPTION
GND	79	S	ground
GND	80	S	ground
GND	81	S	ground
COUT	82	0	clock output to laser driver IC
COUTQ	83	0	inverted clock output to laser driver IC
GND	84	S	ground
V_{DD}	85	S	supply voltage (+3.3 V)
V_{DD}	86	S	supply voltage (+3.3 V)
V _{EE}	87	S	supply voltage (-4.5 V)
V _{EE}	88	S	supply voltage (-4.5 V)
GND	89	S	ground
DOUT	90	0	data output to laser driver IC
DOUTQ	91	0	inverted data output to laser driver IC
GND	92	S	ground
GND	93	S	ground
GND	94	S	ground
GND	95	S	ground
GND	96	S	ground
GND	97	S	ground
GND	98	S	ground
i.c.	99	_	internally connected, to be left open-circuit
GND	100	S	ground

Note

1. Pin type abbreviations: O = Output, I = Input, S = power Supply, A = Analog function.

OQ2535HP

SDH/SONET STM16/OC48 multiplexer

OQ2535HP

FUNCTIONAL DESCRIPTION

The OQ2535HP is a 32-channel multiplexer intended for use in STM16/OC48 applications. It multiplexes 32×78 Mbits/s input channels onto a single 2.5 Gbits/s output channel.

The multiplexing is performed in two stages. The 32 input channels are fed into four 8:1 multiplexers to generate four 622 Mbits/s channels. These four channels are then combined into a single 2.5 Gbits/s data stream.

The ENL control input is used for switching between normal and loop modes. When loop mode is enabled, (ENL = LOW), the output signal is switched to DLOOP and DLOOPQ (these outputs could be connected to the LOOP and LOOPQ inputs on the OQ2536HP demultiplexer to form part of a test loop).

The 2.5 GHz clock at CIN and CINQ is used as the system reference. It is divided down to 78 MHz and made available on the CDIV TTL output for timing the input data (D0 to D31).

Low bit rate stage: 4×8 : 1 MUX

This part of the circuit consists of four 8-bit shift registers, each acting as an 8 : 1 multiplexer, along with a synchronization block.

The 32 data input signals are loaded into the shift registers before being shifted out on a 622 MHz clock.

The load pulse for the shift registers is generated in the synchronization block. The inputs SYNSEL1 and SYNSEL2 can be used to adjust the phase of the load pulse with respect to the input data (see Table 3) to synchronize the data and clock signals.

High bit rate stage: 4:1 MUX

The four 622 Mbits/s data outputs from the low bit rate stage are combined into a single 2.5 Gbits/s data stream in two stages: two 2:1 multiplexers are used to generate two 1244 Mbits/s data streams; these signals are then fed into a third 2:1 multiplexer to generate the 2.5 Gbits/s data stream.

The 2.5 Gbits/s serial data stream is passed either to the DOUT and DOUTQ outputs (normal mode), or to the DLOOP and DLOOPQ outputs (loop mode). The output sequence is D31 (MSB) to D0 (LSB). Data and clock output buffers are terminated internally with 100 Ω resistors to GND and are capable of driving 50 Ω loads. The unused output buffers are switched off to help minimize power dissipation.

The outputs CLOOP, CLOOPQ, DLOOP and DLOOPQ are terminated internally with 100 Ω resistors to GND and are specifically designed to drive 50 Ω PCB transmission lines.

The 2.5 GHz clock connected to CIN and CINQ is terminated internally with 50 Ω to GND.

Power supply connections

The power supply pins need to be individually decoupled using chip capacitors mounted as close as possible to the IC. If multiple decoupling capacitors are used for a single pin, they should be mounted beside each other to avoid RF resonance.

To minimize low frequency switching noise in the vicinity of the OQ2535HP, all power supply lines should be filtered once by an LC-circuit with a low cutoff frequency. $V_{CC(T)} \ \text{needs to be filtered separately via an LC-circuit} \ \text{because of the high switching currents present at the CDIV TTL output.} \ As this current contains only 78 MHz harmonics, filtering can be achieved with relatively small values of L and C.$

Ground connection

The ground connection on the PCB needs to be a large copper area fill connected to a common ground plane with low inductance.

RF connections

A coupled stripline or microstrip with an odd mode characteristic impedance of 50 Ω (nominal value) should be used for the RF connections on the PCB.

The connections should be kept as short as possible. This applies to the CML differential line pairs CIN and CINQ, DOUT and DOUTQ, COUT and COUTQ, DLOOP and DLOOPQ, and CLOOP and CLOOPQ. In addition, the following lines should not vary in length by more than 5 mm:

- CIN and CINQ
- DOUT, DOUTQ, COUT and COUTQ
- DLOOP, DLOOPQ, CLOOP and CLOOPQ.

Interface to transmit logic

The 78 Mbits/s interface lines, CDIV and D0 to D31, should not vary in length by more than 20 mm. None should be longer than 70 mm.

SDH/SONET STM16/OC48 multiplexer

OQ2535HP

ESD protection

All pads are protected by ESD protection diodes with the exception of the high frequency outputs DOUT, DOUTQ, DLOOP, DLOOPQ, COUT, COUTQ, CLOOP and CLOOPQ and clock inputs CIN and CINQ.

Cooling

A special cooling device needs to be mounted on the package. The thermal resistance from junction to case, $R_{\text{th i-c}}$, is given in Chapter "Thermal characteristics".

Built in temperature sensor

Three series-connected diodes have been integrated for measuring junction temperature. The diode array, accessed by means of the DIOA (anode) and DIOC (cathode) pins, has a temperature dependency of approximately –6 mV/°C. With a diode current of 1 mA, the voltage will be somewhere in the range 1.7 to 2.5 V, depending on temperature.

Boundary Scan Test (BST) interface

Boundary scan test logic has been implemented for all digital inputs and outputs on the low frequency interface, in accordance with "IEEE Std 1149.1-1990". All scan tests other than SAMPLE mode are available. The boundary scan test logic consists of a TAP controller, a BYPASS register, a 2-bit instruction register, a 32-bit identification register and a 36-bit boundary scan register (the last two are combined). The architecture of the TAP controller and the BYPASS register is in accordance with IEEE recommendations. The four command modes, selected by means of the instruction register, are: EXTEST (00), PRELOAD (01), IDCODE (10) and BYPASS (11). All boundary scan test inputs, TDI, TMS, TCK and TRST, have internal pull up resistors. The maximum test clock frequency at TCK is 12 MHz.

Table 1 BST identifier code

VERSION	OQ	2535 (BINARY)	PHILIPS SEMICONDUCTORS	LSB ⁽¹⁾
0001	01	00 1001 1110 0111	0000 0010 101	1

Note

1. LSB is shifted out first on the TDO pin.

OQ2535HP

Table 2 BST bit order

BIT NUMBER	SYMBOL	PIN
35 (MSB)	CDIV	13
34	ENL	62
33	SYNSEL2	58
32	SYNSEL1	59
31	D31	18
30	D30	28
29	D29	41
28	D28	49
27	D27	19
26	D26	29
25	D25	42
24	D24	50
23	D23	20
22	D22	30
21	D21	43
20	D20	51
19	D19	22
18	D18	31
17	D17	44
16	D16	52
15	D15	23
14	D14	32
13	D13	45
12	D12	53
11	D11	24
10	D10	33
9	D9	46
8	D8	54
7	D7	26
6	D6	34
5	D5	47
4	D4	55
3	D3	27
2	D2	35
1	D1	48
0 (LSB) ⁽¹⁾	D0	57

Note

1. LSB is shifted out first on the TDO pin.

SDH/SONET STM16/OC48 multiplexer

OQ2535HP

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC} ; V _{CC(T)}	supply voltage	-0.5	+6.0	V
V _{EE}	supply voltage	-6.0	+0.5	V
V_{DD}	supply voltage	-0.5	+5.0	V
V _n	DC voltage			
	pins 18 to 20, 22 to 24, 26 to 35, 41 to 55 and 57	-0.5	V _{DD} + 0.5	V
	pins 2, 3, 5, 7, 38, 61 and 62	-0.5	V _{CC} + 0.5	V
	pins 65, 66, 68, 69, 71, 72, 82, 83, 90 and 91	-1.0	+0.5	V
	pins 10 and 78	V _{EE} – 0.5	0.5	V
	pins 74 and 75	V _{EE} – 0.5	V _{CC} + 0.5	V
In	DC current			
	pins 6 and 13	_	50	mA
	pins 74 and 75	_	10	mA
P _{tot}	total power dissipation	_	2.35	W
Tj	junction temperature	_	120	°C
T _{stg}	storage temperature	-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-c}	thermal resistance from junction to case	tbf	K/W

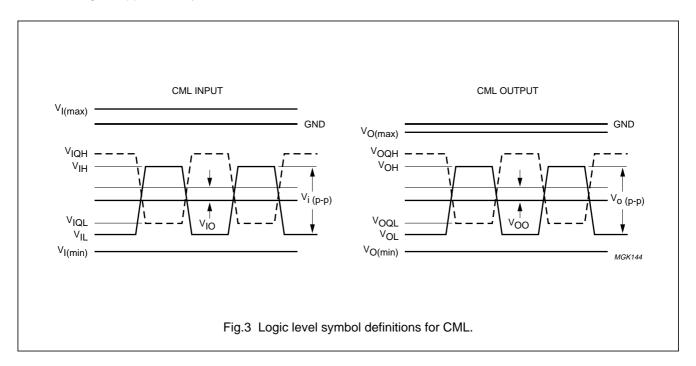
SDH/SONET STM16/OC48 multiplexer

OQ2535HP

DC CHARACTERISTICS

At nominal supply voltages; $T_{amb} = 25 \, ^{\circ}C$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
General		,			•	
V _{CC} ; V _{CC(T)}	supply voltage	note 1	4.75	5.0	5.25	V
V _{EE}	supply voltage		-4.75	-4.5	-4.25	V
V_{DD}	supply voltage		3.1	3.3	3.5	V
I _{CC}	supply current		_	2.3	4	mA
I _{CC(T)}	supply current		_	20	30	mA
I _{EE}	supply current		_	265	364	mA
I _{DD}	supply current		_	20	28	mA
P _{tot}	total power dissipation		_	1.65	2.35	W
Tj	junction temperature		_	_	+120	°C
T _{amb}	ambient temperature		-40	_	+85	°C
TTL 3.3 V in	puts: D0 to D31	,				
V _{IL}	LOW-level input voltage		_	0.4	0.8	V
V _{IH}	HIGH-level input voltage		2	3	_	V
I _{IL}	LOW-level input current		-65	_	0	μΑ
I _{IH}	HIGH-level input current		0	_	110	μΑ
TTL inputs:	ENL, SYNSEL1, SYNSEL2, TDI, TCK, T	MS and TRST			•	
V _{IL}	LOW-level input voltage		_	0.4	0.8	V
V _{IH}	HIGH-level input voltage		2.4	4.0	_	V
I _{IL}	LOW-level input current	note 2	-90	_	0	μΑ
I _{IH}	HIGH-level input current	note 2	0	_	210	μΑ
CML clock i	nputs: CIN and CINQ; note 3				•	
V _{i(p-p)}	input voltage (peak-to-peak value)	50 Ω	100	250	500	mV
V _{IO}	permitted input offset voltage	measurement	-25	_	+25	mV
V _{I,IQ}	input voltages	system	-600	-200	+250	mV
Z _i	single ended input impedance	for DC signal	40	50	60	Ω
TTL outputs	s: CDIV and TDO; note 4	•	•	•	•	•
V _{OL}	LOW-level output voltage		_	0.3	0.5	V
V _{OH}	HIGH-level output voltage		2.4	4.0	_	V
I _{OL}	LOW-level output current		0	_	4	mA
I _{OH}	HIGH-level output current		-400	_	0	μΑ
l _{OZ}	output current in high impedance state		_	_	1	μΑ


SDH/SONET STM16/OC48 multiplexer

OQ2535HP

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
CML outputs in normal mode: COUT, COUTQ, DOUT and DOUTQ; note 3								
V _{o(p-p)}	output voltage (peak-to-peak value)	outputs	250	350	500	mV		
V _{oo}	output offset voltage	terminated	-25	0	+25	mV		
V _O , V _{OQ}	output voltages	externally with 50Ω resistors.	-600	_	0	mV		
Z _o	output impedance	for DC signal	80	100	120	Ω		
CML output	s in loop mode: CLOOP, CLOOPQ, DLC	OOP and DLOOP	Q ; note 3	•	•	•		
$V_{o(p-p)}$	output voltage (peak-to-peak value)	outputs	250	350	500	mV		
V _{OO}	output offset voltage	terminated	-25	0	+25	mV		
V _O , V _{OQ}	output voltages	externally with 50Ω	-600	_	0	mV		
Z _o	output impedance	for DC signal	80	100	120	Ω		
Temperature	e diode array	•				•		
$\Delta V_{DIOA\text{-DIOC}}$	diode voltage range ⁽⁵⁾	I _{I(d)} = 1 mA	1.7	2.07	2.5	V		

Notes

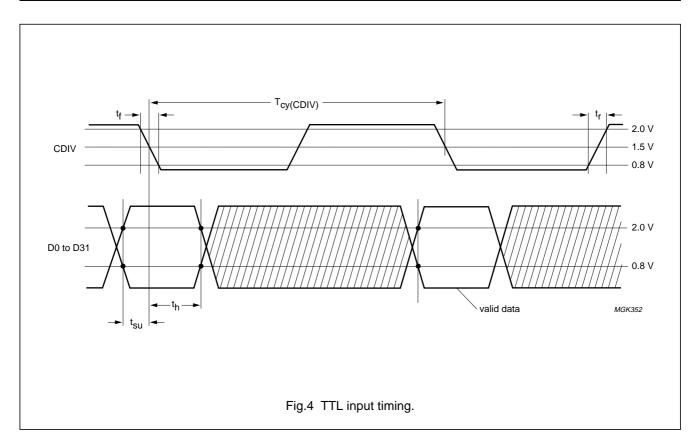
- 1. V_{CC} and $V_{CC(T)}$ require the same power supply voltage. However, a filter is needed to isolate $V_{CC(T)}$ because of the high peak currents that occur at 78 MHz.
- Only for inputs ENL, SYNSEL1 and SYNSEL2. TDI, TMS, TCK and TRST are connected to V_{DD} through 90 kΩ resistors.
- 3. See Fig.3 for symbol definitions.
- 4. TDO is switched to high impedance state if BST is inactive.
- 5. The temperature diode array can be used to measure the temperature of the die. The temperature dependency of this voltage is approximately –6 mV/°C.

SDH/SONET STM16/OC48 multiplexer

OQ2535HP

TIMING

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
TTL input tim	ing					•
f _{clk(CDIV)}	low speed output clock frequency		_	77.76	_	MHz
t _{r(CDIV)}	CDIV rise time	capacitive load of 15 pF	_	_	2600	ps
t _{f(CDIV)}	CDIV fall time		_	_	2600	ps
t _{su}	input data set-up time	note 1	1200	_	_	ps
t _h	input data hold time	note 1	2600	_	_	ps
φ _m	clock phase margin		_	250	_	deg
CML output ti	iming; note 2					
f _{clk(COUT)}	output clock frequency		_	2.488	_	GHz
t _{CDV}	clock edge to data valid time		_	1-	50	ps
t _{DI}	data invalid time		_	_	120	ps
t _{r(CML)} , t _{f(CML)}	CML output rise/fall time		-	_	150	ps
δ _{COUT}	output clock duty factor		45	50	55	%


Note

- 1. The set-up and hold times given are valid for SYNSEL1 = SYNSEL2 = HIGH. Different SYNSEL1, SYNSEL2 combinations will produce different set-up and hold times (see Table 3).
- 2. All CML outputs must be terminated externally with 50 Ω to GND. The specified timing characteristics are applicable in both normal and loop modes.

Table 3 Timing relationship between the clock edge and the data valid region (minimum values)

SYNSEL1	SYNSEL2	t _{su}	t _h	UNIT
HIGH	HIGH	1200	2600	ps
HIGH	LOW	2800	1000	ps
LOW	HIGH	1700	2100	ps
LOW	LOW	3300	500	ps

OQ2535HP

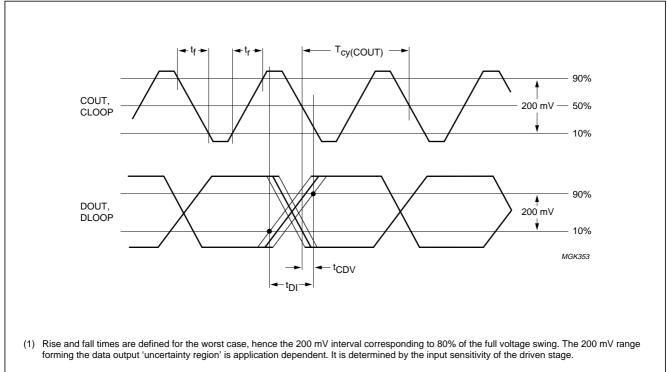
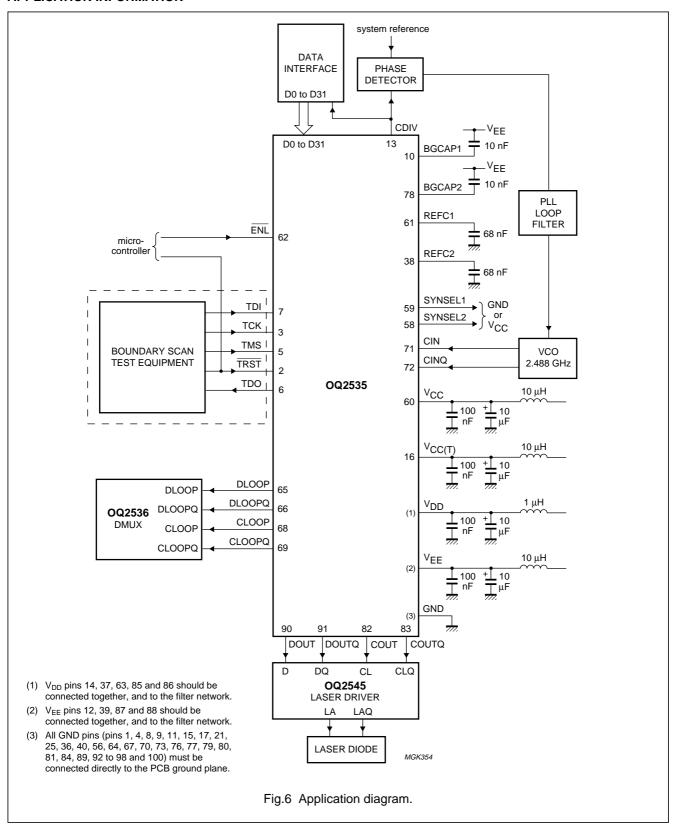
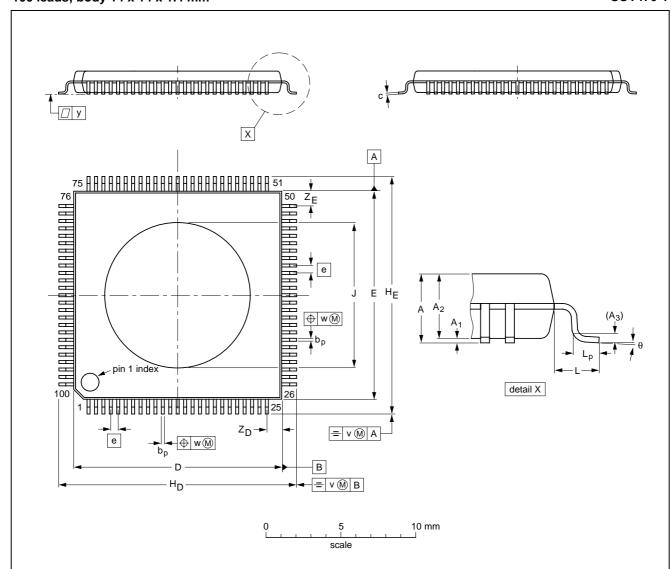



Fig.5 CML output timing

OQ2535HP

APPLICATION INFORMATION



OQ2535HP

PACKAGE OUTLINE

HLQFP100: plastic heat-dissipating low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm

SOT470-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	J(2)	L	Lp	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.6	0.20 0.05	1.5 1.3	0.25	0.28 0.16	0.18 0.12	14.1 13.9	14.1 13.9	0.5	16.25 15.75		10.15 9.15	1.0	0.75 0.45	0.2	0.12	0.1	1.15 0.85	1.15 0.85	7° 0°

Notes

- 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
- 2. Heatsink intrusion 0.0127 maximum.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT470-1						97-01-13	

SDH/SONET STM16/OC48 multiplexer

OQ2535HP

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all LQFP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering is **not** recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering LQFP packages LQFP48 (SOT313-2), LQFP64 (SOT314-2) or LQFP80 (SOT315-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

SDH/SONET STM16/OC48 multiplexer

OQ2535HP

DEFINITIONS

Data sheet status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation						

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,

Fax. +43 160 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,

Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 23 53 60, Fax. +49 40 23 536 300

Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,

Tel. +30 1 4894 339/239, Fax. +30 1 4814 240

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: see Singapore

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,

Tel. +81 3 3740 5130, Fax. +81 3 3740 5077

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,

Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381 Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Al. Vicente Pinzon, 173, 6th floor,

04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22 08007 BARCELONA Tel. +34 3 301 6312, Fax. +34 3 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 632 2000, Fax. +46 8 632 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2686, Fax. +41 1 481 7730

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,

TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.

209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Haves. MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381 Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

SCA56 © Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands 427027/100/01/pp20 Date of release: 1997 Nov 27 Document order number: 9397 750 01622

Internet: http://www.semiconductors.philips.com

